1.2 Applying Algebraic and Calculus skills to Properties of Function '
Revising the definition of a function

o Know the definition of a function.
o Identify the domain and range of a function including and restrictions.

A function is rule which assigns each member of an input set (the domain) to exactly one
member of an output set (the co-domain). The subset of the co-domain containing all the
outputs is called the range.

Examples
Write down the largest suitable domain for each function and state the corresponding range.
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Learning to sketch the modulus function

x| ={x=0
{—-x <0

To sketch the modulus function, reflect the negative portion in the x-axis.

Example
y = |sin x|

Revising the inverse function

A function has an inverse if there is a one-to-one correspondence between the domain and
range.

To sketch the inverse, reflect in the line y = x.
To find the formula, interchange x and y and make y the subject.
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Learning to find the extrema of functions

o Understand the definition of a critical point
o Find stationary points and determine their nature
o Examine critical points and identify the global minimum and maximum

A critical point is where f'(x) = 0 or f'(x) is undefined.

Examples
1. f(x) = |3 + 2x — x2| defined on the domain [0,4)
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Learning to use concavity to determine the nature of stationary points
o Understand the second derivative as the rate of change of gradient
o Know conditions for minimum and maximum turning point

o Use changes in concavity to prove the existence of points of inflexion

f'(x) is the rate of change of the function - we call this gradient.
f"'(x) is the rate of change of the gradient.

Consider a function with the gradient changing from positive to negative:

ie. amaximum turning point. The gradient is decreasing so f*’(x) is negative.

f"(x) < 0 = max turning point

Similarly, a function with the gradient changing from negative to positive:

is a minimum turning point. The gradient is increasing so f"'(x) is positive.

f"(x) > 0 = min turning point

In line with the shape of the curve, a region where the gradient is decreasing is said to be
concave down and a region where the gradient is increasing is concave up.

Initially the curve is concave up. At point P the curve changes to concave down. At this point
the gradient is neither increasing nor decreasing, f''(x) = 0.

A point where the concavity changes is called a point of inflexion.

If f"'(x) = 0 or f"(x) does not exist there may be a point of inflexion. A table of signs for

f" (%) can confirm a change in concavity.

Example
Which of f(x) = x* and f(x) = x° has a point of inflexion at x = 0?
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Learning to identify odd and even functions

o Use substitution of —x to classify functions as odd, even or neither
o Know the symmetry properties of odd and even functions

A function is said to even if it is symmetrical about the y-axis
A

Example y = cosx
- ﬁ\\/ .

A0 =f) £-= C(os(-x)s @s 2 = f=)
A function is said to be odd if it has half-turn symmetry about the origin
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Example
(a) Prove that f(x) = x> - 2x is an odd function
(b) Sketch a graph of y = f{x) for -2 <x <2 showing all critical points and the intercepts

with the axes.
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Learning to find asymptote

o Write down vertical asymptotes by identifying values of x for which the function is
undefined

o Use polynomial division to find non-vertical asymptotes
o Investigate the behaviour of the function as it approaches an asymptote

Example

2
Find vertical and non-vertical asymptotes to the curve y = x—;:—l-, x#0.
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Learning to sketch a rational function

o Find asymptotes »
o Find stationary points and determine their nature
o - Investigate concavity and identify points of inflexion
o Find intercepts with the axes
o Produce a fully annotated sketch
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